



---

**Original Article**



## **Entomo-Remediation using insects for organic waste degradation**

**Shirin Siddiqui and Sunaina**

*Shri Guru Ram Rai University and formerly Doon PG college of science and technology (DCAST), Dehradun, UK*

\*Corresponding author: [Shirinzain21@gmail.com](mailto:Shirinzain21@gmail.com)

Received: 14/02/2026

Published: 17/02/2026

---

### **ABSTRACT**

The escalating accumulation of biodegradable waste driven by rapid urbanization, industrial expansion, and intensified agricultural production has emerged as a critical global environmental challenge. Conventional organic waste disposal strategies, including landfilling and thermal treatment, are associated with significant ecological drawbacks such as greenhouse gas emissions, nutrient loss, and secondary environmental contamination. Entomo-remediation, defined as the utilization of insects for the bioconversion of organic waste into value-added products, has recently gained considerable attention as a sustainable and resource-efficient waste management strategy. Saprophagous insect species, particularly dipteran and coleopteran larvae, exhibit high substrate conversion efficiency through accelerated feeding rates, enzymatic digestion, and symbiotic microbial interactions that facilitate rapid decomposition of diverse organic residues.

Insect-driven bioconversion processes substantially reduce waste biomass while simultaneously generating nutrient-rich by-products, including protein-dense insect biomass and frass enriched with essential macro- and micronutrients. The recovered insect biomass demonstrates substantial potential as a sustainable alternative protein source in animal feed formulations, whereas insect frass can serve as an effective biofertilizer, thereby promoting circular bioeconomy and resource recovery frameworks. Furthermore, entomo-remediation systems operate with relatively lower energy requirements, reduced land utilization, and minimized greenhouse gas emissions compared to conventional waste treatment technologies, highlighting their environmental and economic viability.

Despite these promising advantages, large-scale implementation of insect-based waste valorization systems faces several scientific and socio-regulatory challenges, including substrate heterogeneity, optimization of mass-rearing parameters, biosafety risks, pathogen transmission concerns, regulatory compliance, and public acceptance. Addressing these constraints requires multidisciplinary research focusing on process optimization, risk assessment, and techno-economic evaluation. The present study critically examines the functional role of insects in organic waste

biodegradation and underscores the transformative potential of entomo-remediation as a sustainable component of integrated waste management systems.

**Keywords:** Entomo-remediation; Waste valorization; Insect-mediated bioconversion; Saprofagous insects; Circular bioeconomy; Sustainable waste management; Insect frass; Alternative protein source.

---

## INTRODUCTION

The management of organic waste has become a major global concern due to increasing urbanization, rapid population growth, and expansion of agro-industrial activities. Large quantities of biodegradable waste generated from households, food processing industries, and agricultural operations often remain improperly managed, leading to environmental degradation and public health risks. Conventional waste disposal methods such as landfilling and incineration are frequently associated with adverse ecological impacts, including methane emission, groundwater contamination, and loss of recyclable nutrients.

Recent emphasis on sustainable waste management has encouraged exploration of biological alternatives capable of recycling organic waste into useful products. Among such strategies, entomo-remediation has emerged as a promising approach that utilizes insects as biological converters of organic matter. Insects play a natural role in nutrient cycling and decomposition within ecosystems. Their biological characteristics, including short developmental cycles, high feeding efficiency, and adaptability to diverse environmental conditions, make them suitable candidates for waste transformation processes.

The application of insect-mediated waste conversion aligns with circular resource utilization systems by converting organic refuse into economically valuable products. Therefore, understanding the potential and limitations of entomo-remediation is essential for developing environmentally sustainable waste management solutions.

### Overview of Entomo-Remediation

Entomo-remediation is a biological waste processing technique in which selected insect species feed on biodegradable materials and convert them into biomass and nutrient-enriched residues. The process is primarily facilitated by saprophagous insects that thrive on decomposing organic matter.

The efficiency of insect-mediated waste transformation depends on multiple factors, including species selection, substrate composition, moisture content, temperature, and rearing conditions. Through feeding and metabolic activities, insects accelerate the decomposition process and reduce organic waste mass within a relatively short time frame. This method has gained interest due to its ability to generate value-added products while minimizing environmental damage.

### Insects involved in organic waste conversion

- *Fly Larvae as Waste Converters,*

Larvae of certain fly species exhibit rapid growth and high feeding capacity, allowing them to process large volumes of organic waste efficiently. These insects are commonly utilized in the conversion of

food scraps, livestock manure, and agro-industrial residues. Their short developmental period enhances their suitability for continuous waste processing systems.

- *Beetle Larvae in Biodegradation,*

Larvae of various beetle species have demonstrated the ability to degrade organic residues such as crop by-products and decomposing plant materials. Their digestive systems are adapted to break down complex organic compounds, contributing to nutrient recycling.

- *Other Potential Insect Candidates,*

Additional insect groups, including orthopteran species, have been investigated for their potential in organic waste utilization due to their ability to produce nutritionally rich biomass under controlled feeding conditions.

#### **Biological mechanisms used in waste transformation**

- *Physical Fragmentation of Organic Material,*

During feeding, insects mechanically break down organic substrates into smaller particles, thereby increasing the surface area available for microbial colonization and enzymatic action.

- *Enzymatic Decomposition,*

Digestive enzymes produced by insects assist in the breakdown of proteins, lipids, and carbohydrates present in organic waste. This biochemical process converts complex organic molecules into simpler nutrients that support insect growth.

- *Microbial Associations,*

Microorganisms present in the insect digestive tract contribute significantly to organic matter decomposition. These microbes enhance nutrient transformation and may suppress harmful pathogens during waste conversion.

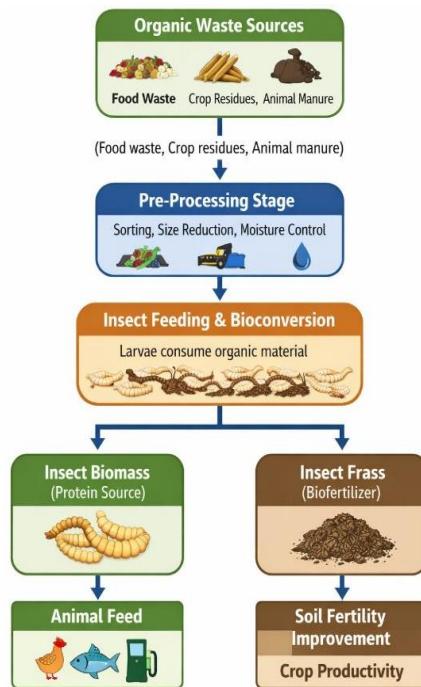



Fig.- Conceptual representation of organic waste conversion into value-added products through insect-mediated bioconversion.

### Value-Added products derived from Entomo-Remediation

- *Production of Insect Biomass,*

Insect larvae generated during organic waste processing contain high levels of proteins, fats, and essential amino acids. Such biomass has considerable potential as an alternative feed source for aquaculture, poultry, and livestock industries.

- *Generation of Nutrient-Rich Frass,*

Frass, the excretory residue produced by insects, contains organic matter and plant-available nutrients. It can serve as a biofertilizer that improves soil fertility and supports sustainable agricultural practices.

- *Energy Recovery Potential,*

Insect biomass can also be processed to produce biofuels, thereby contributing to renewable energy production and reducing reliance on fossil fuels.

| Product           | Composition                          | Application                      |
|-------------------|--------------------------------------|----------------------------------|
| Insect biomass    | Protein, Lipid, Amino acid           | Poultry, Fish and Livestock feed |
| Frass             | Organic matter, Nitrogen, Phosphorus | Biofertilizer                    |
| Biofuel substrate | Lipid rich biomass                   | Renewable energy production      |

### Environmental and socio-economic advantages

Entomo-remediation offers numerous benefits, including:

- Significant reduction in biodegradable waste accumulation
- Lower emission of greenhouse gases compared to conventional disposal methods

- c) Recovery of nutrients through biological recycling
- d) Reduced land and energy requirements
- e) Generation of economically valuable products
- f) Contribution to circular economy and sustainable agriculture

| Parameter                  | Conventional waste mgt. | Entomo-remediation |
|----------------------------|-------------------------|--------------------|
| Greenhouse gas emission    | High                    | Low                |
| Waste reduction efficiency | Moderate                | High               |
| Energy consumption         | High                    | Low                |
| Nutrient recovery          | Limited                 | High               |
| Land requirement           | Large                   | Minimal            |

Mgt.- management

### **Constraints in implementation**

- *Variation in Waste Composition*

Differences in organic waste quality can influence insect growth rate and waste conversion efficiency.

- *Technical Challenges in Mass Production*

Large-scale insect rearing requires controlled environmental conditions and standardized production protocols.

- *Biosafety and Health Concerns*

Potential risks related to contamination and disease transmission must be carefully monitored to ensure safe utilization of insect-derived products.

- *Policy and Public Awareness Limitations*

Insufficient regulatory guidelines and limited public acceptance remain major barriers to commercial adoption of insect-based waste management technologies.

### **Future research directions**

Further investigations are necessary to improve insect rearing techniques, optimize feeding substrates, and integrate automated waste processing technologies. Advances in molecular and microbiological research may enhance understanding of insect digestive efficiency and safety aspects. Incorporating entomo-remediation into integrated waste management systems could significantly improve sustainability outcomes.

### **CONCLUSION**

Entomo-remediation represents an innovative and environmentally responsible approach for managing organic waste. The capacity of insects to efficiently convert biodegradable residues into valuable biological products demonstrates their potential role in sustainable waste recycling systems.

Continued research, technological refinement, and policy support are essential to promote large-scale adoption of insect-based waste conversion strategies.



**REFERENCES**

van Huis, A. (2020). Insects as food and feed, a new emerging agricultural sector: A review. *Journal of Insects as Food and Feed*, 6(1), 27–44.

Diener, S., Zurbrügg, C., & Tockner, K. (2015). Bioaccumulation of heavy metals in the black soldier fly larvae feeding on organic waste. *Waste Management*, 34(1), 75–83.

Lalander, C., Diener, S., Zurbrügg, C., & Vinnerås, B. (2019). Effects of feedstock on larval development and process efficiency in black soldier fly waste treatment. *Waste Management*, 102, 211–218.

Surendra, K. C., Olivier, R., Tomberlin, J. K., Jha, R., & Khanal, S. K. (2016). Bioconversion of organic wastes into biodiesel and animal feed via insect farming. *Renewable Energy*, 98, 197–202.

Makkar, H. P. S., Tran, G., Heuzé, V., & Ankers, P. (2014). State-of-the-art on use of insects as animal feed. *Animal Feed Science and Technology*, 197, 1–33.

Parodi, A., Leip, A., De Boer, I. J. M., et al. (2018). The potential of insects as feed for sustainable food systems. *Nature Sustainability*, 1, 313–321.

Gold, M., Tomberlin, J. K., Diener, S., Zurbrügg, C., & Mathys, A. (2018). Decomposition of biowaste by insects: A review of global developments. *Waste Management*, 82, 302–318.

Čičková, H., Newton, G. L., Lacy, R. C., & Kozánek, M. (2015). The use of fly larvae for organic waste treatment. *Waste Management*, 35, 68–80.

Meneguz, M., Schiavone, A., Gai, F., et al. (2018). Effect of rearing substrate on growth performance and nutrient composition of black soldier fly larvae. *Journal of the Science of Food and Agriculture*, 98(15), 5776–5784.

Wang, Y. S., Shelomi, M., & Li, Q. (2017). Reduction of food waste by insects. *Journal of Environmental Management*, 191, 37–45.

Oonincx, D. G. A. B., & de Boer, I. J. M. (2012). Environmental impact of production of mealworms as a protein source. *PLoS ONE*, 7(12), e51145.

Barragan-Fonseca, K. B., Dicke, M., & van Loon, J. J. A. (2017). Nutritional value of the black soldier fly and its suitability as animal feed. *Journal of Insects as Food and Feed*, 3(2), 105–120.

Lardé, G. (1990). Recycling of coffee pulp by insect larvae. *Biological Wastes*, 33(4), 307–310.

Rehman, K., Cai, M., Xiao, X., Zheng, L., Wang, H., Soomro, A. A., & Yu, Z. (2017). Cellulose degradation and lipid accumulation by black soldier fly larvae. *Waste Management*, 67, 61–67.

Liu, Q., Tomberlin, J. K., Brady, J. A., Sanford, M. R., & Yu, Z. (2008). Black soldier fly larvae reduce *Escherichia coli* in dairy manure. *Environmental Entomology*, 37(6), 1525–1530.

Newton, G. L., Sheppard, D. C., Watson, D. W., Burtle, G., & Dove, R. (2005). Using black soldier fly larvae for manure management. *Animal and Poultry Waste Management Research*, 5, 1–12.